testbase

KS1Practice Reasoning
Name:

THPS
Class:
Time:
1hour
Marks:

35 marks

Comments:

2
How much does the sugar weigh?

This diagram shows the number of animals at a farm.

(a) How many sheep and cows are there altogether?
(animals)
(b) There are more ducks than horses. How many more?

Match the correct label to the bottle.

2 centimetres

2 kilograms

2 litres

2 metres

2 grams

5 Look at these signs.

Write the correct sign in each box.

Here is a diagram for sorting numbers.
Write each number in the correct box.
One is done for you.

$$
46 \quad 20 \quad 53
$$

Three sticks fit along one side of this book.

Estimate how many sticks fit around all four sides of the book.

This table shows the number of cubes they needed.

	cubes
Roma	16
Tina	13
Gareth	18
Ali	20
Susan	15

(a) Whose shoe is heaviest?

(b) Whose shoe is two cubes lighter than Gareth's shoe?

9

Apples cost 10p each. Pears cost 25p each.

Amy buys 1 apple and 2 pears.
How much change does she get from $£ 1$?

10 Write the two missing numbers in this pattern.

11
Write a digit in each box to make the sum correct.

(a) Tick $(\sqrt{ })$ three coins to show how Amy can make 90p.

(b) Tick $(\sqrt{ })$ four coins to show another way to make 90 p .

He wants to collect 100 cards altogether.
Last week he collected 50 cards.
This week he collects 30 cards.

How many more cards does he need?

Amy plants 4 rows of carrots.

There are $\mathbf{3}$ carrots in each row.

A rabbit eats 2 of the carrots.

How many carrots are left?

Two of the numbers are in the wrong bag.
Draw a cross (\boldsymbol{X}) on each of them.

16

Sita cuts a pizza into four equal slices.
She eats one slice.
What fraction of the pizza does she eat?

17 Complete the table.

words	digits
thirty-eight	38
	40
ninety-four	

18 Four children share these shells.
They each get the same number of shells.

How many shells does each child get?

$\begin{gathered}\text { small bottle } \\ \text { of water }\end{gathered}$
$\frac{1}{4}$ litre

large bottle
2 litres

How many small bottles of water will fill the large bottle?

20 Look at the numbers in this addition.

Use the same numbers to make these correct.

What will the tile look like after it has been turned?

Tick one.

Tick (\checkmark) the hexagon.

Part of it is in square B5

Write the other two squares it is in.

and

How much more money does she need?

26 Write the correct number in each box.

One shape is in the wrong place on the sorting grid.
Draw a cross (\boldsymbol{X}) on it.

Shapes with a square face	Shapes without a square face

28
Draw the minute hand on the clock to show twenty-five past eight.

1

All shapes must be correctly matched for the award of the mark.

Do not award the mark if a shape is matched to more than one name.

Ignore any additional shapes drawn.
$2 \quad 150(\mathrm{~g})$
(a) 10 (animals)
(b) 4

Do not accept 7-3

4
Line drawn joining the bottle of lemonade to 2 litres.
Accept any clear way of indicating the correct answer. If any additional line is drawn, award no mark unless the intention is clear.

5

All boxes must be correct for the award of the mark.

6 All three numbers positioned in the correct boxes as shown:

All three numbers must be positioned correctly for the award of the mark.

Do not award the mark if any of the given numbers are written in more than one box.

Ignore any other numbers written in the boxes.
$7 \quad$ Accept answers in the range 14 to 18 (sticks) inclusive.
Do not accept 12.

8 (a) Ali's
(b) Roma's
Accept‘ Romà .

9 Award TWO marks for the correct answer of 40 (p)
If the answer is incorrect, award ONE mark for evidence of appropriate working, eg:
$2 \times 25=50$.
$50+10=60$.
£1-60 = incorrect answer.

10 Pattern completed as shown:

Both numbers must be correct for the award of the mark.

Do not accept more than one digit in each box.
Do not accept $70+13=83$

12 (a) Three coins ticked as shown:

Accept any other clear way of indicating the correct coins.
(b) Four coins ticked as shown:

Accept any other clear way of indicating the correct coins.

1320 (cards)

OR

If the answer is incorrect, award ONE mark for evidence of appropriate method, e.g.

- $3 \times 4=12$
$12-2=$
Award ONE mark for a complete correct method.
(Use the acceptable and unacceptable responses given to help you make your decision.)

Exemplar responses

Declan has been awarded two marks because he has recorded the correct answer even though it is not within the answer box. Petra has recorded a complete pictorial method but has not evaluated her final answer; therefore she is awarded one mark.

Declan

Petra

Molly has made an arithmetic error when totalling four groups of 3 . An invisible step; i.e. 9 - 2 , can be assumed because she has the answer 7, and therefore she is awarded one mark for a complete correct method. Joel has made a similar arithmetic error in totalling the four 3s. For his second step we cannot assume he attempted to subtract 2 , as he has not reached the answer of 7; therefore no mark can be awarded.

Chen has recorded a complete method; i.e. he has multiplied 4 by 3 and subtracted 2 . If he had not made an arithmetic error in calculating 4×3, he would have reached the correct final answer. Consequently he can be awarded one mark. Jenny has calculated 4×3 correctly, but has failed to subtract 2 , to complete the method, so no mark can be awarded.

$$
16-2=14
$$

Jenny

$$
+\cdots \times \varepsilon=15
$$

Java and Tom have used a counting on method for the first part of the problem. Java has made four jumps of 3, but has made an error in her third jump. Although she has not shown the next step in the problem, we can see that she has subtracted 2 as $13-2=11$. She has recorded a complete, correct method so one mark can be awarded. Tom has not made any arithmetic errors in repeatedly adding 3 . He has recorded four jumps of 3 , but did not start from 0 . This is not a correct method for calculating 4×3, so no mark can be awarded.

Tom

Craig and Omar have used pictorial representations to illustrate the rows of carrots. Craig has done this correctly and clearly shown the subtraction of 2; however he has miscounted the remaining carrots. He has recorded a complete, correct method so one mark can be awarded. Omar has made an error in recording the carrots, possibly confusing the number of rows and the number of carrots in each group. Although he subtracts 2 to complete the calculation, it is not a fully correct method, so no mark can be awarded.

Omar

Jasmine has recorded a complete method with an arithmetic error. She calculates four lots of 3 (=13) incorrectly, but goes on to complete the method by subtracting 2 and is awarded one mark. Kim may have intended to follow the same procedure, but because she has only recorded three groups of 3 , we cannot be assured of her method for calculating 4×3, so no mark can be awarded.

Kim

$$
3+3+3-2
$$

Hannah and Seija have both recorded part of their method. Hannah has correctly calculated $4 \times$ 3 mentally before recording the result and subtracting 2 from it ($12-2$). Although she made an arithmetic error in her subtraction she has a complete, correct method so one mark can be awarded. Seija may have carried out the same procedure, but because she has not recorded her working for the first part, we cannot be sure how her 13 was obtained. Therefore no mark can be awarded.

Seija

Simon and Maria have both recorded the second part of the method, like Seija. However Simon has shown four groups of 3 (the first part of the method) and we can assume he has miscounted to reach his 11 . He has shown a complete, correct method so one mark can be awarded. Maria may have mentally calculated 4×3 (wrongly), but because she has not recorded her working for that part, we cannot be sure how her 11 was obtained. Therefore no mark can be awarded.

Maria

15 Crosses drawn on 41 and 70 as shown:

even numbers

odd numbers

Both numbers must be selected for the award of the mark.
Accept any other clear way of indicating the correct numbers.

16 Correct fraction written in the box, as shown:

Also accept $\frac{1}{4}$ written in words, e.g. 'one quarter'.

words	digits
thirty-eight	38
forty	40
ninety-four	$\mathbf{9 4}$

Both parts must be correct for the award of the mark.
Accept any reasonable spelling for 'forty',
e.g. forte, fourtee, fort.

Do not accept words that might indicate 'fourteen', e.g. fortin,

OR

'four', e.g. for, fore.
Accept reversed digits for '94’, e.g. ‘ P4' provided that the order of the digits is not swapped.
Do not accept 49, 4P etc.

18 (shells)

198 (small bottles)

20 Both subtractions completed correctly:
14-5 = 9
$14-9=5$
Award both marks for the correct answer by entering 1 in each mark box.

This mark may be awarded for children who:
complete one subtraction correctly

OR

choose their own pair of numbers which they use to complete both subtractions correctly.

If one mark is awarded, enter 1 then 0 in the mark boxes.

Do not award the mark if more than one answer is indicated.

23 Hexagon ticked as shown:

Accept any other clear way of indicating the correct shape, e.g. circling.
Do not award the mark if other shapes are also indicated, unless it is clear that the correct shape is the pupil's final choice.

24 B4 and C4 in either order.
Both grid references must be correct for the award of the mark.
Do not award the mark if $4 B$ or $4 C$ are given.

25 34 or thirty-four. correct.
Also accept answer written outside box if

26 (a) 45 written in the first box as shown:

(b) 58 written in the second box as shown:

Accept any number in the range 57-59 inclusive.

27 Cross drawn on the cylinder, as shown:

Accept any other clear way of indicating the cylinder.
Do not award the mark if other shapes are indicated, unless it is clear that the correct shape is the pupil's final choice.
Accept a tick that is near to the correct answer, so as long as it is unambigous as to which shape is identified.

28 Minute hand drawn within the tolerances shown:

Accept minute hand drawn between $22 \frac{1}{2}$ minutes past to $27 \frac{1}{2}$ minutes past (inclusive).

Accept any length clock hand drawn as long as it is within the range given above.

