

Progression in Reasoning and Problem Solving at

Thorpe Hesley Primary
School

Progression in Reasoning and Problem Solving at Thorpe Hesley Primary School

The aims of the National Curriculum are to ensure that all children:

- become **fluent** in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils have conceptual understanding and apply their knowledge rapidly and accurately to problems.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language.
- can **solve problems** by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

This progression map is written to help teachers to meet these aims, and in particular to promote mathematical reasoning in children, to develop an ability to convince others using mathematical arguments, and to engage with non routine problems. Routine problems, as in closed worded problems, are included in the National Curriculum programmes of study and so are not written into this progression map.

The progression map presents four different types of mathematical reasoning, although these are linked and often overlap. However, teachers can see the progression in each types of reasoning.

Mathematical reasoning and problem solving are best embedded in all lessons, and the learning outcomes and activities suggested here are recommended as part of everyday teaching, rather than as discrete problem solving lessons. If A child has been exposed to 'deeper' activities, these will be signaled in their maths book with a 'Top Secret' stamp. That being said, here at Thorpe Hesley Primary School we also give children the opportunity to access lessons which are dedicated entirely to problem solving and reasoning in the form of Mission Impossible lessons.

When teaching children to convince others and engage with ideas of proof, teachers can:

- use ideas across the mathematics curriculum, to ask children to convince others of facts and ideas. In particular they may use resources such as dienes and place value counters to show how they have reasoned about number. Some examples are listed in this progression map.
- ask children to discuss general statements and argue whether these are true or not true. To show something is true they might first look at some examples to convince themselves or others but as they move through Key Stage 2, they can present an argument based on the properties of numbers and shape, for example arguing that double an even number is even because an even number is a multiple of 2, and so that double this would also be a multiple of two. They might refer to numicon as an example. When they argue that a statement is not true they need to find one example which contradicts it, called disproof by counter example. They might decide when some statements are always or sometimes true.
- Use the finding rules and describing patterns investigations to ask children to generate general statements and then explain why they are true.

Further support for guidance in reasoning can be found on: https://whiterosemaths.com/https://www.ncetm.org.uk/resources/44672
Further activities can be found on: www.nrich.maths.org

	Working systematically. Finding all possibilities. Enumerating possibilities for combinations	Generalising and conjecturing. Explaining and justifying. Finding rules and describing patterns	Thinking strategically. Interpreting information. Solving logic problems	Reasoning, convincing and proof. Considering general statements: "Convince yourself, convince your friend, and convince your enemy".
Year R	Example learning outcomes: Talk about things being in order. Identify same and different. Use ordinal vocabulary, 1st 2nd etc Sort objects using and explaining criteria Explain what they are thinking and doing. Represent work with objects or pictures and discuss it, talk about ways to check that there are no omissions or repetitions Example activities: Sorting activities Billy the clown wears a coloured nose and bowtie for his show. He has a red nose and a blue nose. Make pictures of Billy with his noses. How many different pictures? He has a spotted bowtie and a striped bow tie. Make pictures of Billy with his bow ties. How many different pictures? Can you make different outfits for Billy? Use a nose and a bow tie. How many different outfits? How many different ice creams can you make if you choose one scoop of either chocolate or strawberry ice cream? Now try with a plain or chocolate cone. A lady bird has six spots. She can have some spots on the left and some on the right. Draw as many different ways of arranging the spots as you can. Put ten things into 2 paper bags. Can you do it in a different way? PNS Finding all possibilities: In the café, working in sand, railway track	Example learning outcomes: Talk about, recognise and recreate simple patterns. Identify same and different. Describe solutions to practical problems, drawing on experience, talking about their own ideas, methods and choices Sort objects using criteria and explaining Make a prediction about the next part of the pattern. Example activities: How many smarties in a pack? How many of each colour? Will it be the same for the next pack? Which colour is there more of? Find different shaped sponges. Which one holds the most water? Stand up 10 skittles. Have one go at knocking some down with a soft ball or bean bag. Record how many are still standing and how many you knock down. Can you guess how many knocked down before you count them? Copying, making and talking about patterns with toys, bricks, beads etc PNS Finding rules and describing patterns: Teddy's presents	Example learning outcomes: Recognise similarities and differences. Sort objects using several criteria and sort to their own criteria, justifying their choices. Say why an item does not belong into a set. Guess the criteria being used to sort objects. Explain what they are thinking and doing. Example activities: • How is your shoe different to your neighbour's? • PNS Logic problems: Shoes, nature sort • Solving everyday problems about classroom tasks e.g. do we have enough apples for snack time?	Activities across the mathematics curriculum: Explain why an answer is correct for example: • when answering simple problems involving addition and subtraction in their play • why they have used particular shapes in junk modelling • why certain shapes fit into a jigsaw • explain how they work out doubles and halves using resources • etc Link to persuasive language

	Working systematically. Finding all possibilities. Enumerating possibilities for combinations	Generalising and conjecturing. Explaining and justifying. Finding rules and describing patterns	Thinking strategically. Interpreting information. Solving logic problems	Reasoning, convincing and proof. Considering general statements: "Convince yourself, convince your friend, and convince your enemy".
Year 1	Example learning outcomes: Identify same and different. Record different answers in a systematic way, identifying why this is important and explaining how they have done this Explain how answers differ. Recognise that there is sometimes more than one possible answer to a problem. Give examples that match a given statement and those that don't. Talk about patterns in their lists / results. Example activities: How many different ice creams can you make if you choose one scoop of either chocolate or strawberry ice cream with a plain or chocolate cone? Holly and Ivy are two of Santa's elves. Holly wears a red hat and a red tunic. Ivy wears a green hat and a green tunic. In the morning they get dressed in the dark. How many ways can Holly get dressed? Make a tower of 6 cubes (or a snake or a train) using 2 colours. How many can you make? Put ten things into 2 paper bags. How many different ways can you do it? If In Teddy Town, teddies are either red or yellow and they live in red or yellow houses. There are 4 teddies - 2 red and 2 yellow, and 4 houses - 2 red and 2 yellow. Can you match each teddy to a house so that the four pairs are all different from each other? You buy a lollypop for 6p and give the exact money, how many different ways can you pay? List numbers which total 10 Billy the clown wears a coloured nose and bowtie for his show. He has a red nose and a blue nose, and a spotted bowtie and a striped bow tie. How many different outfits can he appear in? PNS Finding all possibilities: Lollipops, down the path Nrich https://nrich.maths.org/9798	Example learning outcomes: Describe and recreate simple patterns involving numbers, shapes or items. Decide whether examples satisfy given conditions. Describe ways of solving puzzles and problems, explaining choices and decisions. Represent findings orally, using pictures or practically. Make a prediction about the next part of the pattern and explain why. Recognise a simple relationship Make predictions and conjectures Example activities: • Whose pencil case holds the most? • Whose school bag holds the most? • How many ways can you make a ten using Cuisenaire rods? • PNS Finding rules and describing patterns: Teddy' presents • Nrich http://nrich.maths.org/9009 http://nrich.maths.org/9014 http://nrich.maths.org/9014 http://nrich.maths.org/8972	Example learning outcomes: Use one piece of information and see what effect it has. Check that the answer meets all of the criteria. Solve a problem using given facts. Sort objects, number or shapes and explain why an example does or does not fit into a group Example activities: • Shape or number Sudoku 2x2, 3x3 grids • Give me an example of and another eg give me an example of an even number, and another, a pair of numbers with a sum of ten , and anotheretc • PNS Logic problems: Toys, Granny's garden • Nrich http://nrich.maths.org/9036	Activities across the mathematics curriculum: Explain why an answer is correct for example: • showing how they know the multiples of two, five or ten using resources such as numicon or a number line or square • why an number sentence is correct or incorrect using known facts or resources, • why adding or subtracting zero has no effect, • how they know what half or quarter of a quantity object or shape is • etc Example activities: • Convince a friend or enemy whether general statements are true or false, for example: All triangles have 3 sides When you add two numbers, you can change the order of the numbers and the answer will be the same You can make 4 different two digit numbers with the digits 2 and 3 When you add 10 to a number the units digit stays the same. 3 + 4 = 4 + 3 (Commutative law) Odd one out: for example with 2D and 3D shape • Show me that is the same as Eg show me that 3 + 4 = 4 + 3 • Explain why the general patterns or rules they found as part of 'finding rules and describing patterns' are true. • http://nrich.maths.org/9016 (Link to persuasive language)

	Working systematically. Finding all possibilities. Enumerating possibilities for combinations	Generalising and conjecturing. Explaining and justifying. Finding rules and describing patterns	Thinking strategically . Interpreting information. Solving logic problems	Reasoning, convincing and proof. Considering general statements: "Convince yourself, convince your friend, and convince your enemy".
Year 2	Example learning outcomes: Use a systematic way to solve a problem. Create a systematic list of possibilities. Talk about why it is a complete list and how they have been systematic. Look for patterns and possible general statements or relationships Example activities;: If three bears, a red bear, a yellow bear and a green bear, play each other at table tennis, each taking it in turns to play another bear, how many games will there be? How many different football strips could you make choosing from 2 T shirts and 2 pairs of shorts? How many different numbers can you make with the digits 1, 2 and 3? Arrange 3 different coloured smarties in different ways List pairs of number which have a units digit of 3 when added together List pairs of numbers with a difference of 3 Use 7 cubes - 5 of them of one colour and 2 of another colour. These 7 have all to be joined together. The five that are of one colour must all touch the table that you are working on. The two that are of a different colour must NOT touch the table. How many different shapes can you find?	Example learning outcomes: Identify patterns and relationships involving numbers or shapes, and use these to solve problems. Talk about how a pattern will continue and make predictions. Talk about the pattern generally, discussing a general relationship or statement in words Describe and explain methods, choices and solutions to puzzles and problems. Example activities: • Make a family of multi-link animals, eg a baby dog: How many cubes? Make the next one in the dog family: How many cubes for each one? How many cubes for each one? How many cubes for the 100th member? Can you see a patterns? How can you work out how many cubes for any dog in the family? • If you fill your pencil case with pennies how rich are you? What about 2pence pieces? 10 pence pieces? • How high is your chair? Your table? Your door? How high would they need to be for a giant child double your height? • If a bank only has 2p and 5p coins, what amounts can you make? • Make multi-link towers of the same size and put them on the corners of a square. How many cubes did you use? Make your towers a different size but keep them all the same. How many now? Try with a triangle or a pentagon. • PNS Finding rules and describing patterns: Hop	Example learning outcomes: Solve a problem by identifying given facts and prioritising them. Identify necessary information for solving problems Confirm that they have found the correct solution by checking in another way. Use recording to help them make sense of the information given and to find missing information Example activities: • Give me an example of and another eg give me an example of a pair of numbers with a difference of 2, and another, a multiple of 3, and anotheretc • Shape or number Sudoku 3x3, 4x4 grids • PNS Logic problems: Shape puzzler, sandwich	Activities across the mathematics curriculum: Explain why an answer is correct, for example: • use known facts or inverse operations or place value or resources such as dienes or numicon or a number line to show why a number sentence is correct or incorrect, • use resources to show how they know how to find a fraction of a quantity or shape or object and that 2/4 = ½ • how they have compared and ordered items by measuring • why different combinations of coins might have the same value • why times expressed in different ways may be the same • how they solved problems using pictograms, tallies or block diagrams • etc Example activities: • Explain why the general patterns or rules they found as part of 'finding rules and describing patterns' are true. • Convince a friend or enemy whether these statements are true or false. Explain their thinking, showing why a general statement may be true or not true with the use of particular examples. For example: When you subtract ten from a number, the units digit stays the same You can add 9 to a number by adding 10 and subtracting 1 All even numbers end in 0, 2, 4, 6, 8 A cube has 9 faces If you have 3 digits, and use each one exactly once in a three digit numbers Etc • Odd one out activities eg looking at three numbers such as 2, 15, 30, decide which is the odd one out and convince your friend • Same and different activities eg 2D and 3D shapes
	PNS Finding all possibilities: Maisie	scotch grid	shop	• Show me that is the same as Eg show me that 2 lots

and the m	aze, line of symmetry	• http://nrich.maths.org/9009	Nrich	of 5 is the same as 5 lots of 2
Nrich <u>ht</u>	tp://nrich.maths.org/9798	http://nrich.maths.org/9014	http://nrich.maths.	Nrich http://nrich.maths.org/9016
		http://nrich.maths.org/8972	org/9036	(Link to persuasive language)

	Working systematically. Finding all possibilities. Enumerating possibilities for combinations	Generalising and conjecturing. Explaining and justifying. Finding rules and describing patterns	Thinking strategically. Interpreting information Solving logic problems	Reasoning, convincing and proof. Considering general statements: "Convince yourself, convince your friend, and convince your enemy".
Proposition of the control of the co	example learning outcomes: Prove that they have found all possible answers by being systematic. Use patterns to make predictions about the number of combinations Use patterns to talk about general statements or elationships Example activities: Billy the clown wears a coloured nose and bowtie for his show. He has a red nose and a plue nose, and a spotted bowtie and a striped bow tie. How many different outfits can he appear in? How many outfits if he buys a new nose and bow tie? List trios of numbers which otal 101 List numbers which leave a emainder when divided by 5 Find the shapes which straight ides which can be found by sutting a square in to two pieces of PNS Finding all possibilities: ireworks, Susie the snake Nrich http://nrich.maths.org/9803	Example learning outcomes: Generate patterns by considering examples systematically in an investigation Make predictions based on patterns in results in an investigation Make general statements and discuss relationships using everyday language Describe and explain methods, choices and solutions to puzzles and problems. Continue more complex patterns. Example activities: • Draw a 2x2 square on a 100 square. Add the diagonals. What do you notice? Will it always be true? Try different shaped squares/rectangles. • Make a net for a cube. How many different cube nets can you find? • Which numbers can you make using only four 3s and any combinations of operations? • PNS Finding rules and describing patterns: Hop scotch grid, Party bags, L shaped models http://nrich.maths.org/8915 http://nrich.maths.org/8917 http://nrich.maths.org/8909	Example learning outcomes; Solve a puzzle by identifying the facts and prioritising them. Use one piece of information in the problem and see what effect it has. Identify necessary information for solving problems Check that their solution meets all the criteria. Example activities: • Give me an example of and another eg give me an example of a fraction equal to 1/2, and another, a pair of numbers which total 100, and anotheretc • Shape or number Sudoku, 3x3 grids and sets of 3x3 grids eg 9 x9 • PNS Logic problems: coloured shapes, Rebecca's school day • Nrich http://nrich.maths.org/8944	Activities across the mathematics curriculum: Explain why an answer is correct, for example: • use known facts or inverse operations or place value or resources such as dienes or a number line to show why a number sentence is correct or incorrect, • Use resources such as dienes and place value counters to show how they used column methods for addition and subtraction, demonstrating that ten units is one ten and ten tens is one hundred • Use resources to show how they know what one tenth of a number is • Use resources or pictures to show how they know what a fraction of a number is and to show equivalent fractions • How they know what the perimeter of a shape is • Why times expressed in different ways may be the same • How they use conversions between metric units of measurements to solve problems (eg m,, cm, mm, kg, g, I ml) • Why a full turn is the same as four quarter turns etc • How they solved problems using bar charts, pictograms and tables • etc Example activities • Convince a friend or enemy whether these statements are true or false. Explain their thinking, showing why a general statement may be true or not true with the use of particular examples. For example: Any odd number is one more than an even number Any even number can be made as the sum of two odd numbers The multiples of 4 are always even etc • Odd one out activities • Same and Different Activities • Same and Different Activities • Show me that is the same as Eg show me that a litre is the same as two lots of 500 ml

	 Explain why the general patterns or rules they found as part of 'finding rules and describing patterns' are true. Nrich http://nrich.maths.org/8921 (Link to persuasive language)
--	---

	Working systematically.	Generalising and	Thinking	Reasoning, convincing and proof.
	Finding all possibilities.	conjecturing.	strategically.	Considering general statements:
	Enumerating possibilities	Explaining and	Interpreting	"Convince yourself, convince your friend, and convince your enemy".
	for combinations	justifying.	information.	
		Finding rules	Solving logic problems.	
		and		
		describing patterns		
Year 4	Example learning	Example learning	Example learning	Activities across the mathematics curriculum:
	outcomes:	outcomes:	outcomes:	Explain why an answer is correct, for example:
	Solve a problem by	Report solutions to puzzles	Solve a problem by	• use known facts or inverse operations or place value or resources such as dienes or a
	checking possible	and problems, giving	identifying and prioritising	number line to show why a number sentence is correct or incorrect
	solutions against a given	explanations and reasoning	given facts and	Use resources such as dienes and place value counters to show how they used column
	criteria.	orally and in writing, using	information, checking	methods for addition and subtraction,
	List possible answers in a	diagrams and symbols	possible solutions against	Explain how they solved word problems: choosing operations and disregarding
	systematic way efficiently.	Use patterns to make	given criteria.	unnecessary information and checking their answers
	Justify the approach as	predictions and general	Identify necessary	Explain what they know about multiplying by 0 and 1, and dividing by 1
	being systematic.	statements.	information for solving	Use an array to explain how to find factors of a number, and how to multiply two or
	Prove that all items are	Talk about the justification	problems	three digit number by a one digit number using the distributive law
	listed	for the general statement.	Solve a problem by	Use resources or diagrams to show equivalent fractions and how to find a non unit
	Make a general statement	Describe and continue	identifying and prioritising	fraction of a quantity or shape
	and provide a convincing	more complex patterns.	given facts and	how they use conversions between metric units of measurements to solve problems (eg
	argument that it is true.	Draw conclusions from	information.	km, m, hour, minute)
	Use a pattern to predict	investigations and explain	Example activities:	how they found the area of a shape
	the next number of	their reasoning	Give me an example of	why analogue and digital, and 12 and 24 hour times might be the same
	combinations	Example activities:	and another eg give me	• etc
	Example activities:	 How many squares on a chess board? 	an example of a rectangle	Example activities:
	How many different ice		with perimeter of 24cm,	Convince a friend or enemy whether general statements are true or false. Explain their
	creams can you make if	Add three consecutive Add three consecutive	and another, three	thinking, showing why a general statement may be true or not true with the use of
	you choose one scoop of	numbers. What do you	consecutive numbers with	particular examples and mathematical patterns and properties. For example:
	either chocolate or	notice about the answer?	an odd total, and	Any odd number is double a number add 1
	strawberry ice cream with	Now try adding 5, 7, 9	anotheretc	If you multiply a number by 10 the digits move one place to the left
	a plain or chocolate cone?	consecutive numbers.	• Think of a number	The number of lines of reflective symmetry in a regular polygon is equal to the number of
	Add in other flavours of	• Find the number of	Double it, add 15 subtract	sides of the polygon
	ice cream, different types	vertices, faces and edges	3, halve it, take away the	The sum of three odd numbers is odd
	of cone, and then	on some 3D shapes. Do	number you first thought	Odd one out activities
	chocolate or toffee sauce	you notice a pattern? Is	of. Now I will read your	• Same and different activities for example with 2D and 3D shapes
	on top.	there a separate pattern	mind, the answer is 6!	• Show me that is the same as Eg show me that ¼ of 24 is 6
	• List numbers which leave	for prisms and pyramids?	Why does it work?	Explain why odd numbers added to odd numbers have even totals etc Typlain why the graph patterns on rules they found as part of (finding rules and
	a remainder of 1 when	PNS Finding rules and describing patterns: Party	Make up your own	• Explain why the general patterns or rules they found as part of 'finding rules and
	divided by 7	describing patterns: Party	PNS Logic problems:	describing patterns' are true.
	PNS Finding all	bags, L shaped modelsNrich	shape puzzle, boys and	• Nrich
	possibilities: sheep dog		girls	http://nrich.maths.org/8921
	trails, 3 digits	http://nrich.maths.org/89	• Nrich	(Link to persuasive language)
	Nrich	<u>15</u>	http://nrich.maths.org/89	

http://nrich.maths.org/98	http://nrich.maths.org/89	44	
<u>03</u>	<u>17</u>		
	http://nrich.maths.org/89		
	<u>09</u>		

	Moulting systematically Finding all	Consulising and sonic structure	Thinking	Descript convincing and the of
	Working systematically. Finding all	Generalising and conjecturing.	Thinking	Reasoning, convincing and proof.
	possibilities. Enumerating possibilities	Explaining and justifying. Finding	strategically.	Considering general statements:
	for combinations	rules and describing patterns	Interpreting	"Convince yourself, convince your friend, and
			information.	convince your enemy".
	Evenuela la contra a contra con con		Solving logic problems	Fulls's who are a grown in a growth for a ground in
Year 5	Example learning outcomes: Find all possibilities by working	Example learning outcomes:	Example learning outcomes:	Explain why an answer is correct, for example: • use known facts or inverse operations or place value or
	systematically.	Generate patterns through systematic	Use one piece of information in	resources such as dienes or a number line to show why a
	Prove all possibilities are listed	examples in an investigation	more complex problems and	number sentence is correct or incorrect
	Recognise when reasoning is systematic	identify and describe patterns using	see what effect it has.	Use resources such as dienes and place value counters to
	and when it is not.	mathematical language	Identify necessary information	show how they used column methods for addition and
	Identify a pattern to make a prediction of	Accurately predict a later term in a pattern	for solving problems	subtraction,
	the number of possibilities.	or sequence	Check that the answer meets	Use an array to show the distributive law and use this to
	Make a general statement and provide a	Use a pattern to suggest and test general	the criteria.	explain their written methods for long multiplication
	convincing argument and apply this to	statements.	Choose and use a recording	Explain how they solved word problems: choosing
	other situations with similar or more combinations.	Provide a convincing argument for the	system to organise the given information independently.	operations and disregarding unnecessary information and checking their answers
	Example activities:	general statement.	Use appropriate language that	Explain common factors and multiples using an array,
	Billy the clown wears a coloured nose	Draw conclusions from investigations and	is associated with this type of	number line or resources
	and bowtie for his show. He has a red nose	explain their reasoning using words,	logic problem, e.g. 'If this	Prove whether a number is prime or not using an array or
	and a blue nose, and a spotted bowtie and	symbols or diagrams as appropriate	then this will change'	resources or known facts
	a striped bow tie. How many different	Example activities:	Example activities:	Use resources or diagrams to show equivalent fractions and
	outfits can he appear in?	• The Tower of Hanoi	Give me an example of and	how to add and subtract fractions with denominators which
	How many outfits if he buys a new nose	Move all the discs to the right hand tower.	another eg give me an	are the same or multiples of the same number
	and bow tie?	Only move one disc at a time.	example of two fractions with a	how they use conversions between metric units and hotugen metric and imperial units of measurements to call to
	What about if he decides to wear a hat as well and buys a yellow and an orange hat	Never put a large disc on a smaller one.	total of 2, and another, a 3D	between metric and imperial units of measurements to solve problems
	too?	What is the smallest number of moves? Try	shape with at least two	how they use facts about angles at a point or making a
	Shoes too?	different numbers of	trangular faces , and	straight line to solve problems
	List the factors of for example 48, how do	different sized disks.	anotheretc	how they solve problems using line graphs and tables
	you know you have them all?	• If you have 3 towns, and each one has one	Andrea, Peter, Debra and Simon	• etc
	• List the square numbers between 50 and	road to the others, how many roads?	are each wearing one of black,	Example activities:
	500	How many roads for 4, 5, 6, any number of	red, yellow and green T-shirts.	Convince a friend or enemy whether these general are true
	Place each of the numbers 1 to 5 in a V	towns?	Use the following clues to find	or false or sometimes true. Explain their thinking, with the
	shape so that the two arms of the V have	Explore the digit roots of numbers. To find the digit root, add the digits together. If	out which colour shirt each	use of particular examples and mathematical patterns and
	the same total. How many different possibilities are there? What do you notice	the digit root, add the digits together. If	person is wearing	properties. For example: A multiple of 6 is a multiple of 2 and 3
	about all the solutions you find? Can you	your total has more than one digit root,	The red shirt is worn by one of	The digits of multiples of nine add up to 9
	explain what you see? Can you convince	continue to add the digits together. When	the boys	The product of two consecutive numbers is even
	someone that you have all the solutions?	your total has one digit, this is the digit root.	Andrea and the girl who always	Angles on a straight line add up to 180 degrees
	What happens if we use the numbers from	What do you notice? What are the digit	wears black are in different	Odd one out activities eg 2D and 3D shape
	2 to 6? From 12 to 16? From 37 to 41?	roots of the multiples of 3?	schools	Same and different activities eg 2D and 3D shape
	From 103 to 107? What can you discover	PNS Finding rules and describing patterns:	Simon's shirt colour has the	• Show me that is the same as Eg show me that 1/5 of 10
	about a V that has arms of length 4 using	candle problem, sequence of models	same number of letters as his	is the same as ½ of 4
	the numbers 1–7?	• Nrich		• Show me why adding consecutive odd number from 1
	 PNS Finding all possibilities: ice creams, treasure hunt 	http://nrich.maths.org/8915	name	makes square numbers eg 1 + 3 + 5 = 9 (picture proof) • Explain why the general patterns or rules they found as part
	Nrich	http://nrich.maths.org/8917	PNS Logic problems:	of 'finding rules and describing patterns' are true.
	THIGH			or initialing rules and describing patterns are true.

http://nrich.maths.org/9803	http://nrich.maths.org/8909	nicknames, tea for two	Nrich
		Nrich	http://nrich.maths.org/8921
		http://nrich.maths.org/8944	(Link to persuasive language)

	Maralina	Conceptions	Thinking stuctonics II.	Describe convincing and week
	Working	Generalising and	Thinking strategically.	Reasoning, convincing and proof.
	systematically.	conjecturing.	Interpreting information	Considering general statements:
	Finding all	Explaining and	Solving logic problems	"Convince yourself, convince your friend, and convince your enemy".
	possibilities.	justifying.		
	Enumerating	Finding rules and describing		
	possibilities for	_		
	combinations	patterns		
Year 6	Example learning	Example learning outcomes:	Example learning outcomes:	Activities across the mathematics curriculum:
	outcomes:	Construct and use a general	Identify necessary information for	Explain why an answer is correct, using concise argument, involving symbols,
	Identify a pattern to	statement in words then	solving problems	mathematical language, graphs or diagrams. For example:
	make a prediction of	symbols (e.g. the cost of c	Prioritise and use given facts to solve	• use known facts or inverse operations or place value to show why a number
	the number of	pens at 15 pence each is 15c	and check complex logic problems.	sentence is correct or incorrect
	possibilities.	pence).	Ask 'What if ?' questions.	Use resources such as dienes and place value counters to show how they used
	Make a general	Draw conclusions from	Recognise the effect of extensions	column methods for addition and subtraction,
	statement with a	investigations and explain	such as 'What if?' questions.	Use an array to show the distributive law and use this to explain long
	convincing argument	their reasoning	Create their own criteria for solving a	multiplication
	and apply this to	Express the general	logic problem in the context of a	Explain how they perform long and short division, using resources such as place
	other situations with	statement from an	solved problem	value counters
	similar or more	investigation using	Refine and extend problems to	Explain how they solved word problems: choosing operations and disregarding
	combinations.	mathematical language,	generate fuller solutions	unnecessary information and checking their answers
	Express the general	symbols and sometimes	Example activities:	Use resources or diagrams to show equivalent fractions and how to order, add,
	statement from an	with algebra.	Give me an example of and	subtract and multiply fractions with different denominators and divide fractions
	investigation using	Example activities:	another eg give me an example of a	by whole numbers
	mathematical	 How many handshakes 	fractions equivalent to 3/4, and	Explain how they solve ratio and proportion problems, perhaps using the bar
	language, symbols	take place if 30 people in a	another, a fraction smaller than	method
	and sometimes with	room shake hands with each	1/10 , and anotheretc	Explain when they can use the formulae for area and volume of shapes
	algebra.	other exactly once?	Crossing the bridge	How to generate number sequences, and the rule for sequences they have
	Example activities:	Make a 3x3x3 cube out of	Four friends need to cross a bridge.	generated
	 How many ways 	27 small cubes. Imagine	They start on the same side of the	How they express missing number problems algebraically
	can three children	dipping it into paint. How	bridge. A maximum of two people can	How they use conversions between metric units (miles and km) and between
	line up for assembly?	many small cubes have: 3	cross at any time. It is night and they	metric and imperial units of measurements to solve problems
	Four children?	faces painted? 2 faces	have just one lamp. People that cross	How they use facts about angles in a shape, at a point or vertically opposite to
	Ten children?	painted? 1 face painted? O	the bridge must carry the lamp to see	solve problems
	 List fractions with 	faces painted?	the way. A pair must walk together at	How they solve problems using pie charts and line graphs, and calculate and
	the same value as	Investigate for 1x1x1, 2x2x2	the rate of the slower person:	interpret mean
	0.01	and other sized cubes	Rachel: - takes 1 minute to cross	Example activities:
	List sets of three	Investigating regions:	Ben: - takes 2 minutes to cross	Convince a friend or an enemy that general statements are always, sometimes
	numbers with a	Draw a circle and put two	George: - takes 7 minutes to cross	or never true. If never true, disprove by counter example. Use particular
	mean of 6	dots anywhere on the	Yvonne: - takes 10 minutes to cross	examples but recognise that arguments should be based on general
	List primes	circumference. Join these up	The second fastest solution gets the	mathematical patterns and properties. For example:
	between 50 and 70	with straight lines and count	friends across in 21 minutes. The	If you add three consecutive numbers the sum is three times the middle number
	If the final score at	how many regions you	fastest takes 17 minutes. Can you work	Multiplying does not always make the answer larger

the end of a hockey	make. Try other number of	out how it is done?	Dividing a whole number by half makes the answer twice as big
match was 4,2, what	dots.	 PNS Logic problems: Albert square, 	Rectangles always have two diagonals which meet at right angles
could the score be at	 Which numbers have odd 	house points	Odd one out activities eg 2D and 3D shape
half time?	totals of factors?	Nrich	Same and different activities: eg 2D and 3D shapes
 PNS Finding all 	 PNS Finding rules and 	http://nrich.maths.org/8944	• Show me that is the same as Eg show me that 30% of 60 is the same as
possibilities: King	describing patterns: candle	 Murder mystery 	60% of 30
Arnold, 4 by 4	problem, sequence of	https://www.ncetm.org.uk/resources/	Explain why odd numbers multiplied by even numbers are odd etc
Nrich	models	20330	Explain why opposite angles are equivalent
http://nrich.maths.or	Nrich		Explain why the general patterns or rules they found as part of 'finding rules
g/9803	http://nrich.maths.org/8915		and describing patterns' are true.
	http://nrich.maths.org/8917		Nrich
	http://nrich.maths.org/8909		http://nrich.maths.org/8921
			(Link to persuasive language)